483 research outputs found

    A Model of the Effect of Uncertainty on the C elegans L2/L2d Decision

    Get PDF
    Abstract At the end of the first larval stage, the C elegans larva chooses between two developmental pathways, an L2 committed to reproductive development and an L2d, which has the option of undergoing reproductive development or entering the dauer diapause. I develop a quantitative model of this choice using mathematical tools developed for pricing financial options. The model predicts that the optimal decision must take into account not only the expected potential for reproductive growth, but also the uncertainty in that expected potential. Because the L2d has more flexibility than the L2, it is favored in unpredictable environments. I estimate that the ability to take uncertainty into account may increase reproductive value by as much as 5%, and discuss possible experimental tests for this ability

    An opioid-like system regulating feeding behavior in C. elegans

    Get PDF
    Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified nlp-24 by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express npr-17, did not response to naloxone. Thus, we suggest that Caenorhabditis elegans has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggestC. elegans may be the first genetically tractable invertebrate opioid model

    Mathematical Modeling of C elegans L1 aggregation

    Get PDF
    First-stage larvae (L1s) of the nematode Caenorhabditis elegans aggregate after starvation. I develop a mathematical model of this behavior based on the classic Keller-Segel model. In the Keller-Segel model, organisms emit a diffusible signal, to which they are attracted. The model is embodied in two partial differential equations (PDEs): an advection-diffusion equation for density of organisms, and a reaction-diffusion equation for the concentration of chemical signal. The PDE system has an equilibrium in which organisms and signal are uniformly distributed, but this equilibrium becomes unstable when the density of organisms exceeds a threshold, resulting in formation of aggregates. To model C elegans L1 aggregation, I develop versions of the Keller-Segel model. The Keller-Segel partial differential equations (PDEs) are solved numerically, and the results compared to observed C elegans behavior. I find that I cannot reproduce observed behavior with a single attractive signal. In particular, aggregates become very large in an attractant-only model, while aggregates of C elegans L1s are fairly uniform in size (typically ca. 500 μ m diameter) and limited to a few hundred animals each. To reproduce this behavior, it is necessary to introduce a second chemical signal, a repellent, with longer diffusional range than the attractant. In addition, the model is designed to prevent density within aggregates from rising above that density at which the worms are tightly packed. With this design, two other features of actual L1 behavior are reproduced. First, the worms form disk-shaped aggregates. Second, even after long times, the density of worms outside aggregates remains low but positive. To better understand the behavior of the PDE system—its equilibria, in particular—I describe a general method for developing exact or approximate energy functionals that are stationary at equilibrium. (Some but not all of these energy functionals are Lyapunov functionals.) I use these energy functionals to analyze aggregation behavior. I also describe their use to determine the properties of equilibria, e.g. the expected geometry and arrangement of aggregates

    Modeling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behavior across species

    Full text link
    A quantitative understanding of organism-level behavior requires predictive models that can capture the richness of behavioral phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here we investigate the motile behavior of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioral repertoire by measuring motile trajectories of the canonical lab strain C.elegansC. elegans N2 as well as wild strains and distant species. We focus on trajectory dynamics over timescales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioral control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting ``bet-hedging'' strategies for foraging.Comment: 46 pages, 18 figures, 6 table

    Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx

    Get PDF
    SummaryStarvation activates MAPK in the pharyngeal muscles of C. elegans through a muscarinic acetylcholine receptor, Gqα, and nPKC as shown by the following results: (1) Starvation causes phosphorylation of MAPK in pharyngeal muscle. (2) In a sensitized genetic background in which Gqα signaling cannot be downregulated, activation of the pathway by a muscarinic agonist causes lethal changes in pharyngeal muscle function. Starvation has identical effects. (3) A muscarinic antagonist blocks the effects of starvation on sensitized muscle. (4) Mutations and drugs that block any step of signaling from the muscarinic receptor to MAPK also block the effects of starvation on sensitized muscle. (5) Overexpression of MAPK in wild-type pharyngeal muscle mimics the effects of muscarinic agonist and of starvation on sensitized muscle. We suggest that, during starvation, the muscarinic pathway to MAPK is activated to change the pharyngeal muscle physiology to enhance ingestion of food when food becomes available

    Compact Objects and Accretion Disks

    Get PDF
    Recent developments in the spectropolarimetric study of compact objects, specifically black holes (stellar and massive) and neutron stars are reviewed. The lectures are organized around five topics: disks, jets, outflows, neutron stars and black holes. They emphasize physical mechanisms and are intended to bridge the gap between the fundamentals of polarimetry and the phenomenology of observed cosmic sources of polarized radiation, as covered by the other lecturers. There has been considerable recent progress in spectropolarimetry from radio through optical frequencies and this is producing some unique diagnostics of the physical conditions around compact objects. It is argued that there is a great need to develop a correspondingly sensitive polarimetric capability at ultraviolet through gamma-ray energies.Comment: To be published in the proceedings of the XII Canary Islands Winter School of Astrophysics. Contains 47 pages with 10 figure

    Starvation-induced collective behavior in C. elegans

    Get PDF
    We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior—they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several otherCaenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies

    Starvation-induced collective behavior in C. elegans

    Get PDF
    We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior—they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several other Caenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies
    • …
    corecore